L27 March 19 Invariant

Thursday, March 19, 2015

Homeomorphic or not

To prove X = Y (meaning homeomorphic)

basically construct f: X -> T

—— → R² / 70} ξ'x (-ω,ω)

 $(e^{i\theta}, t) \longmapsto (e^{tt} \cos \theta, e^{tt} \sin \theta)$

But, to prove X = Y

cannot check all possible mappings

(R, standard) \(\S', standard) \\ \text{Why?}

Answer. non-compact compact

([0,1], standard) = (5', standard)

∃ x, ∈ X , X \ {x, } _ disconnected

XXY

Exercise.

General Principle.

Find a topological property P, i.e.,

if X satisfies P then its homeomorphic

image also satisfies P

DP: compactness

② P: ∃ x. ∈ X such that X\[xo] is disconneded

In another form

Define $T_k(X) = \begin{cases} 1 & \text{if } X \text{ is compact} \\ -1 & \text{if } X \text{ is non-compact} \end{cases}$

Fact. $X=Y \implies k(X) = k(Y)$

2) Define c(X) = # of connected component

Clearly, $X = Y \implies c(X) = c(Y)$

But $\kappa([0,1]) = 1 = \kappa(S')$ no conclusion

Let $S(X) = \sup \{ c(X \setminus \{x\}) : x \in X \}$

$$S([0,1]) = 2 \neq S(S^1) = 1$$

Fact. $X = Y \implies s(X) = s(Y)$

Topological Invariant

Function { Topological } L Mathematical }

Spaces Objects

satisfying $X = Y \implies L(X) = L(Y)$

objects

numbers, matrices
polynomials
vector spaces, etc.

Thursday, March 19, 2015 10:17 AM

Euler Characteristic

X = S'

$$\chi(x) = \begin{cases} V - E & \text{if } x \text{ is } 1 - \text{dim} \\ V - E + F & \text{if } x \text{ is } 2 - \text{dim} \\ \sum_{k=0}^{n} (-1)^k b_k & \text{if } x \text{ is } n - \text{dim} \end{cases}$$

$$x \quad X = [0,1]$$

$$\chi = 2-1=1 \quad \text{or} \quad 6-5=1$$

$$\chi = 2 - 2 = 0$$
 or $8 - 8 = 0$

$$4 \times 1 = 5^{2}$$
 $1 \times 1 = 6 - 12 + 8 = 2$
 $2 \times 1 = 6 - 12 + 8 = 2$
 $3 \times 1 = 6 - 12 + 8 = 2$
 $4 \times 1 = 6 + 4 = 2$

* Explore
$$\chi(\mathbb{R}) = 1$$
, $\chi(\mathbb{R}^2) = 1$, $\chi(\mathbb{R}^n) = 1$

Thursday, March 19, 2015

10:48 AM

$$X(T^2) = 9 - 27 + 18 = 0$$

 $T^2 = 5' \times 5'$
 $X(T^2) = X(5') \cdot X(5')$

There is algebraic relation on topological invariants Compact orientable surfaces

Compact surfaces

$$\chi(\mathbb{P}^2) = 1$$
, $\chi(\text{Klein}) = -1$

Fact. Let X, Y be compact surfaces. $X = Y \iff \chi(X) = \chi(Y)$