L27 March 19 Invariant

Homeomorphic or not
To prove $X=Y$ (meaning homeomorplice) basically construct $f: X \longrightarrow Y$

$$
\begin{aligned}
& \mathbb{S}^{1} \times(-\infty, \infty) \longrightarrow\left(\mathbb{R}^{2} \backslash\{0\}\right. \\
& \left.\left(e^{i \theta}, t\right) \quad \longmapsto \cos \theta, e^{+\pi} \sin \theta\right)
\end{aligned}
$$

But, to prove $X \neq Y$
cannot check all possible mappings
(1) $\quad(\mathbb{R}$, standard $) \neq\left(S^{\prime}\right.$, standard $)$

Answer. why?
π^{\prime}

non-compact
(2) $\quad([0,1]$, standard $) \neq\left(5^{\prime}\right.$, standard $)$
 $\forall y_{0} \in Y$ $\exists x_{0} \in X, X \backslash\left\{x_{0}\right\}$ $Y \backslash\left\{y_{0}\right\}$ connected XキY
Exercise.

$$
\neq S^{\prime}
$$

General Principle.
Find a topological property P, i.e., if X satisfies P then its homeomorphic image also satisfies P
(1) P : compactness
(2) $P: \exists x_{0} \in X$ such that $X \backslash\left\{x_{0}\right\}$ is disconnected

In another form
(1) Define $k(X)= \begin{cases}1 & \text { if } X \text { is compact } \\ -1 & \text { if } X \text { is non-compact }\end{cases}$

Fact. $X=Y \Longrightarrow k(X)=k(Y)$
(2) Define $c(X)=\#$ of connected component Cleanly, $X=Y \Rightarrow c(X)=c(Y)$
But $c([0,1])=1=c\left(S^{\prime}\right)$ no conclusion
Let $s(X)=\sup \{c(X \backslash\{x\}): x \in X\}$

$$
S([0,1])=2 \neq s\left(S^{1}\right)=1
$$

Fact. $X=Y \Rightarrow s(X)=s(Y)$
Topological Invariant
Function $\left\{\begin{array}{c}\text { Topological } \\ \text { spaces }\end{array}\right\} \xrightarrow{L}\left\{\begin{array}{c}\text { Mathematical } \\ \text { objects }\end{array}\right\}$ numbers, matrices
satisfying polynomials

$$
X=Y \Rightarrow l(X)=l(Y)
$$

vector spaces, etc.

Euler Characteristic

$$
\left\{\begin{array}{c}
\text { Topological } \\
\text { spaces }
\end{array}\right\} \xrightarrow{\chi} \mathbb{Z}
$$

$$
X(X) \stackrel{\text { roughly }}{=} \begin{cases}V-E & \text { if } X \text { is } 1-\operatorname{dim} \\ V-E+F & \text { if } X \text { is } 2-\operatorname{dim} \\ \sum_{k=0}^{n}(-1)^{k} b_{k} & \text { if } X \text { is } n-\operatorname{dim}\end{cases}
$$

* $X=[0,1]$

$x=2-1=1$ or $\quad 6-5=1$
* $x=S^{\prime}$

$x=2-2=0$ or $8-8=0$

$$
* x=\mathbb{S}^{2}
$$

$x=6-12+8=2$ or $4-6+4=2$

Dodecahedron $=20-30+12=2$
Icosahedron $=12-30+20=2$

* Explore $X(\mathbb{R})=1, \quad X\left(\mathbb{R}^{2}\right)=1, \quad x\left(\mathbb{R}^{n}\right)=1$

Torus π^{2}

$$
\begin{aligned}
& x\left(\pi^{2}\right)=9-27+18=0 \\
& \pi^{2}=s^{\prime} \times 5^{\prime} \\
& x\left(\pi^{2}\right)=x\left(5^{\prime}\right) \cdot x\left(5^{\prime}\right)
\end{aligned}
$$

There is algebraic relation on topological invariants
Compact orientable smfaces

$$
x=2-2 g
$$

Compact surfaces

$$
\chi\left(\mathbb{P}^{2}\right)=1, \quad x(\text { klein })=-1
$$

Fact. Let X, Y be compact surfaces.

$$
X=Y \Leftrightarrow X(X)=X(Y)
$$

